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Abstract-A numerical technique is described for the solution of impact on finite rods in which the strain rate
is assumed to be a function of stress and strain. Examples are given for the strain rate function taken
as a power of the dynamic overstress and the results are compared with available analytic solutions and
approximate uniform strain theory.

1. INTRODUCTION

THE behavior of compression impact specimens of material exhibiting rate dependent
plastic characteristics is of interest in the design and interpretation of experiments for
investigating dynamic plastic properties. Previous studies (1, 2] have presented approaches
by way of analytical solutions of the partial differential equations describing the dynamic
deformation. Analytical solutions are possible only if the general partial differential
equations are linearized, or if approximations are introduced so that the problem is
reduced to solving ordinary differential equations. Since the actual behavior of structural
metals is strongly non-linear, it is necessary for a realistic treatment to include non-linear
relations between stress, strain, and strain rate, as well as irreversibility, in representing
the plastic behavior. The present paper describes a scheme of a numerical solution suitable
for general viscoplastic laws. The technique is illustrated by computations for two types of
viscoplastic law. More extensive calculations and interpretations with experiments will be
given in a companion paper.

We consider the problem of impact on a finite rod as shown in Fig. 1. A rigid body of
mass G with initial velocity Vo parallel to the axis of the rod strikes at the free end X = 0
of the rod. After contact, the striking mass is assumed to stick to the end of the bar. It is
assumed that the input kinetic energy GV~/2 is much larger than the maximum elastic
energy (T~AL/2E which the rod can absorb. (Here (To and E are respectively the static yield
stress and the elastic modulus ofthe rod; A and Lare respectively the initial cross sectional
area and the length of the rod.) Hence, the elastic strains are assumed negligible in compari­
son to plastic strains. The material is regarded as rigid-viscoplastic, meaning that no defor­
mation occurs if the dynamic stress is smaller than the static yield stress and the rate of

* The results presented here were obtained in the course of research sponsored by the Advanced Research
Projects Agency of the Department of Defense.

t Formerly:!t Brown University.
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FIG. 1. Impact of a rigid mass on a viscoplastic rod.

deformation is governed by a functional relation between strain rate, stress, and strain if
the dynamic stress exceeds the static yield stress.

We introduce the following dimensionless notation:

TABLE I

where

x
x=-

L

G
k=­

pAL

Ii
V=-

DL
rI

s=­
rIo

x = distance along rod from impact end (Lagrange coordinate)
T = time
L = length of rod
p = mass density of the rod material
G = mass of striking body (assumed rigid)
V = particle velocity at X, T

Vo = initial velocity of striking mass
(J = nominal compressive stress

(J 0 = static yield stress in compression (nominal)
e = nominal compressive strain

D = constant expressing viscoplastic behavior
E I = slope of strain hardening curve (tangent modulus in plastic range)

The equations of dynamics and of continuity are as follows in the dimensionless notation:

(1)

where a subscript denotes partial differentiation. The plastic strain rate behavior will be
expressed by means of a function F(s, '1) such that

'1, = F(s, '1) > 0

=0

if s > g('1)

if lsi:::; g('1)
(2a)
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where s = g(rf} is the condition for plastic flow under quasi-static loading, with g(O) = 1.
F(s, tI) is assumed to obey the following conditions:

F. > 0

F" S 0

F(g('1). tI) = o.

The form of F which we shall consider in this analysis is

(2b)

til = (s-l-A1])P

=0

ifs>l+A1]

if lsi s 1+A'1
(3)

where p and Aare constants of the material. The power p corresponds to the non-linearity
of the viscoplastic behavior, having values in the neighborhood of 5 for several structural
metals [2]. The coefficient A is proportional to the slope of the static stress-strain curve
in the plastic range, this being taken as linear for simplicity. For a more general form of F,
a material without strain hardening can be characterized by F" == O.

The initial and boundary conditions of the problem are:

ForO < x S 1:

ForOSt:

V(X,O) = tI(x,O) = 0

s(x,O) = 1

v(l, t) = 0; v(O,O) = Vo

s(O, t) = - kvl(O, t)

(4a)

(4b)

(4c)

(4d)

The boundary condition at x = 0 of equation (4d) is used as long as 1]1(0, t) > O. When
1]/(0, t) S 0, there is an unloading boundary (t) (see Fig. 2) along which tI/(', t) = O. Then
equation (4d) must be replaced by

s(', t) = -(k+Ovr«, t).

PLASTIC

°oL-------l.--

FIG. 2. Moving boundary between the deforming segment and the non-deforming segment.

(4e)
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The numerical solution of equations (1) and (2) subjected to conditions (4) will be discussed
in turn in the following sections for materials without strain-hardening (2 = 0) and with
strain-hardening (2) 0). The condition (4b) was discussed in [1].

2. NO STRAIN-HARDENING

For materials that exhibit no appreciable strain-hardening, the strain rate function F
can be assumed independent of 1'/. Hence, instead of equations (2) we write,

1'/, = G(s) > 0

=0

if s > 1

if lsi ~ 1
(5)

where Gs > 0 and G(I) = O. In the region where plastic deformation is occurring, equations
(1) and (5) reduce to

if s > 1. (6)

This is a quasi-linear parabolic equation.
It was shown in [3] that the solution of (6) with the initial and boundary conditions

of (4) cannot have an unloading initiated in the interior of a plastic region. The proof
depends on the maximum-minimum principles governing equations of the type of
equation (6) (see [4]).

When equation (6) is replaced by a finite difference scheme for numerical calculation,
one has to pay attention not only to the convergence and stability of the finite difference
equations, but also to the maximum-minimum properties of the equations. Otherwise,
physical requirements of the solution may be violated. The maximum-minimum principles
for various finite difference equations which approximate equation (6) were studied in [5].
The results show that, except for the backward difference method, there is a restriction
on the mesh ratio, which depends on G.(s), in order for the principles to hold. If we denote
the mesh ratio M/(~x)2 by r, the results of r5] show that the weak maximum-minimum
principle holds if

r ~ G'(s)/2

r ~ Gis)

any r

for the forward method

for the Crank-Nicolson method

for the backward method.

If Gis) is very small for certain s, the mesh ratio must be chosen inconveniently small unless
one uses the backward method. For instance, without strain-hardening, equation (3) is
written as

1'/, = (s-1)P

=0

if s > 1

if lsi ~ 1.
(7)

Hence Gis) = p(S-l)P-l. For p > 1, Gs approaches zero as s approaches one. Therefore,
in order to use the same mesh ratio for the whole calculation, we shall use only the backward
difference method.

We shall derive the finite difference equations directly from equations (1), and represent
the rod for this purpose by a model consisting of discrete mass particles (Fig. 3). Let us
divide the rod into n segments (hence ~x = lin) and replace the mass of each segment by
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I---x=it>x ,

FIG, 3, Model of finite difference approximation,

a mass particle at the center of the interval. We denote Si,j' 'Ii,i the stress and strain respec­
tively at the grid point x = itix, t = jAt, and we let vi,i denote the velocity at x = (i - t)tix,
t = jAt. The strain rate will be written as ~i,i instead of using a subscript t. Now, equations
(1) and (5), together with the boundary and initial conditions (4a)-(4d) can be written
(see Fig. 3) as follows, with r = titj(tiX)2:

Difference equations:

(a) Impulse-momentum, j = 1,2 ...

i = 0:

i = 1,2, ... n:

-n2k
So' = --(vo ,-Vo '-1)oJ r ,) ,)

n
Si,)'-Si-1,)' = --(Vi ,-Vi )'-1)r ,) ,

(8a)

(b) Viscoplastic behavior, j = 0,1,2 ... (8b)

i = 0,1,2 ... n:

(c) Velocity-strain rate, j = 1,2 .. ,

~i,i = G(Si)

=0

if Si,j > 1

if Si,j ::; 1

(8c)

i = 0:

i = 1,2 ... n-l:

i = n:

Initial Conditions (j = 0)

i = 0:

i = 1,2 ... n:

Vo,o = vo ; ~o,o = 2nvo = G(so,o)

vi,o = 0; ~i,O = 0

Si,O = 1

(9)

It should be noticed that, with equations (8b), the unloading condition is taken into account
and equation (4e) is automatically satisfied.
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One can eliminate Vi,j from equations (8). If this is done one obtains for the general
case,withj= 1,2, ... ;i= 1,2, ... n-1:

1
= -[G(Si)·)-G(Si)'-l)]'r ' ,

(lOa)

(lOb)

making use of equation (5), where G(Si,j) = 0 if Isd :5: 1. Equation (lOb) corresponds to
the backward finite difference form of equation (6). The existence and uniqueness of the
solution of Si,j for given Si,j-l of equations (10) were shown in [5].

For given Vi,j-l' equations (8) can be solved by a method of successive approximations
for Vi,j' Si,j and ~i,j' By assuming an approximate value vb~j for VO,j' the first equations of
equations (8a), (8b) and (8c) give sb~j, ~b~J' and v\~j respectively. The second equations of
equations (8a), (8b) and (8c) then give s\,j, ~\~j, and v~~j. We continue this process until
v~?}, s~?}, and ~~?} are obtained. If the starting value vb~j is the correct one, then the last
equation of equations (8c) will be found to be satisfied. In other words, if corresponding
to the assumed vb~j we compute rjI~O), where

,/,<.0> = V(O) _ ~n(O!
'1') n,) 2n',n,), (11)

and find that rjI~o> is zero, we have obtained the solution for time t = jtit. Otherwise, we
assume another approximation vb~j and repeat the process.

Let bu denote the error, i.e. the difference between a function u and its approximation
u(O),

Then, from equations (8), one can show (cr. [5]) that

if bVo,j > 0,

brjl ~ c5vn,j ~ c5vn _ 1,j ~ ~ c5vO,j > 0

c5sn,j :5: c5sn _ l,j :5: :5: c5so,j < O.

Similarly, if c5vo,j < 0,

e5rj1 :5: c5vn,j :5: c5vn _ l,j :5: :5: c5vo,j < 0

c5sn,j ~ c5sn - l ,j ~ ~ c5so,j > O.

(12a)

(l2b)

In other words, the absolute values of the error in the calculation of Vi,j and Si,j increase
as i increases. The errors in Vi,j are of the same sign. Similarly, the errors in Si,j' which have
opposite signs to Vi,j' are of the same sign. With the properties expressed in equations (12)
there is no difficulty in the process of successive approximation.

It should be noticed that the successive approximation can be improved by considering
other properties, besides equation (12), of the solution. For instance, the fact that the
unloading boundary must start from x = 0 and terminate at x = 1 implies that

if Sk,j > 1, Si,j > 1 for i > k.
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Also, it can be shown (see [3]) that for 1 ~ j < N,

Vi,j > 0 for i = 0, 1, ... n.

At time t f = N!it all velocities and strain rates are zero, and the deformation stops.
The strains Yfj,j are obtained from

Yfi,j = Yfi,j-l +~i,j!it,

which is essentially a backward difference expression for ~i,j'

For illustration, the strain rate function of equation (7) is taken. In the calculations,
p is taken from 1 to 5, !ix = 0·05 and !it = 0·025. To show the accuracy of the numerical
calculation for this choice of mesh size, we compare the results for k = 1, Vo = 5, and
p = 1 with the exact solution of the differential equation (see [1]), as shown in Fig. 4.

11 1 I

3 t----- .:....t=....:tL, = .:.2~12:...- -=1
"I

1.00.80.6x0.4

Exact solution
x x x Numericol solution

wilh t.x =0.05

l>.1 =0.025

x 1=0.1x___

x_~::::::::::::x-=::::-x-x-x-x

1=0.4 1=1
0

=1.6~~x-~

0.2

10

15

20

s-I

25

FIG. 4. Stress and strain distribution along the rod at different times after impact for a linear viscoplastic
rod without strain hardening.

Note that the initial condition of the problem for the differential equation is s(O,O) = oc),

while that for the finite difference system equations (9) in this example is So 0 = 201.
Nevertheless, the agreement for the stress distribution is fairly good at t = 0'1,'which is
only four steps from t = O. For t ~ 0'4, there is practically no difference between the
exact and numerical solutions for both stress and strain in the rod. The time of unloading
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to is 1·665 and the total time of deformation tJ is 2·120 in the exact solution. In the
numerical solution, they are 1·680 and 2'128 respectively.

5

4

3

IA -I, k -I, vo -5, p-3, llx -0.051

x_x__

x_x__7J 10 ,t o )

x

to_----=------x____x-x
x_x

0005 0010 0015

llt

0020 0025

FIG. 5. to is time parameter at start of unloading. Curves show dependence of strain parameter 1/(0. toJ
and of to upon the mesh size M.

The same mesh size is used in the calculations for p = 1 to 5, with the same impact
data k = 1, Vo = 5. Some of the results are shown in Figs. 6 to 10. Further discussion is
deferred to later sections, after the presentation of the solution for strain-hardening.

3. SOLUTIONS FOR STRAIN-HARDENING MATERIALS

For materials that exhibit strain-hardening, the more general strain rate function
equations (2) must be used. Although the system of equations cannot now be reduced to
a second order parabolic equation in s alone, we shall still use the backward finite difference
scheme to approximate the differential equation. This is done so that the solution will
exhibit various properties found for non-strain-hardening materials, when the material
has very small but finite strain-hardening.

We use the same model as before, Fig. 3. All of equations(8) are still valid except for
equations (8b) which must be replaced by

~i.j = F(Si,j' '1i,)

=0

if Si,j > g('1i,)

if Is;,) ::;; g('1i,)
(8b')

where '1i,j = '1i,j-t +~i,/lt. The numerical solution of equations (8a), (8b') and (8c) by
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successive approximation is essentially the same as that illustrated in the previous section.
The only difference is in the calculation of ~i,j by equations (8b') when Si,j is known.
(rti,j-1' of course, is known.) Equations (8b') for Si,j > g(rtd can be written as:

~i,j = F(Si,j' rti,j-1 +~i,j~t).

If this equation can be solved for ~i,j explicitly, then the calculation is straightforward.
Otherwise, an iteration scheme may be devised for the calculation of ~i,j from Si,j'

The inequalities expressed in equations (12) are still valid for equations (8a), (8b')
and (8c), in view of the conditions equations (2b) imposed on F. Therefore, there is no
difficulty in the solution by successive approximations of this new system of equations.
The existence and uniqueness of the solution follow automatically.

In [31, it was pointed out that the solution of the differential equation of motion with
strain rate function represented by equations (2) satisfies the minimum principle; the
stress S cannot have a minimum value in the plastic region. To see that the finite difference
equations, equations (8a), (8b') and (8c), do possess the same minimum principle, one can
eliminate Vi,j from equations (8a), (8b') and (8c) and obtain a system of equations similar
to equations (lOb):

1
Si+ 1,j- 2si,j+ Si-1,j = ;[F(Si,j' rti)- F(Si,j-t, rti,j-l)] (l3a)

where i = 1,2, ... , n-l. The equations for i = 0 and n are not needed. Now, by the mean
value theorem, the right-hand side of equation (l3a) can be written as

F(Si,j' rti,j) - F(Si,j - l' rti,j- 1) (Si,j - Si,j - 1)P.+(rti,j - rti,j- 1)P"

(Si,j - Si,j - 1)P. +~i,l,,~t

(Si,j- Si,j- 1W. + F(Si,j' rtdP,,~t

where

p. = F.(Si,j, ffi)' P" = F,,(Si,j' ffi)

Si,j = 8Si,j+(l-8)Si,j-1

ffi,j = 8rti,j+(l-O)rti,j-1 0 < () < 1.

Therefore,

and equation (Da) becomes

1 - _
Si+ 1,j-2si,j+Si-1,j = r(1_F"M)[~tF"F(si,j-1' rti,j-1)+(Si,j- Si,j-1)F.]· (Db)

Since F. > 0, P" ~ 0 by equations (2b), equation (13b) satisfies the conditions of the
minimum principle as shown in Lemma II of [5]. Thus Si.j cannot have its minimum at an
interior point.

As an illustration, we take the strain rate function represented by equations (3) with
A. = 1. The results for k = I, Vo = 5 and p = 1 to 5 are shown in Figs. 6 to 10. In all these
calculations, the same mesh size (~x = 0'05, ~t = 0'025) is used as for the previous example.
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FIG. 10. Velocity of the striking mass as function of time, for materials without strain hardening

(A. = 0) and with strain hardening (A. = 1).
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For p = 1, the problem is linear and the analytic solution can be obtained by using
the Laplace transform. This is shown by the bold face lines in Fig. 7(b) for the solution
before unloading occurs. It is seen that the differences between the exact and numerical
solutions are indistinguishable for larger t.

To investigate the accuracy for p other than one, we consider the example for p = 3.
When Ax is decreased, the solution does not seem to improve in any way. For smaller At,
however, the solution does depend on At as shown in Fig. 5. Here we see that the unloading
time to and the total strain 11(0, to) at the free end vary nearly linearly with At. For more
detailed comparisons, the solution for p = 3 with At = {}0125 (which is half the original
interval At = 0'025) is shown in Figs. 6(b) and 7(b) by the dotted lines. The results are
fairly good for x "# O. In general, the result is qualitatively satisfactory even for x = 0,
if not quantitatively. The difficulty in the accuracy of the solution at x = 0 is the fact
that the original differential equation has a singular initial condition while the approximate
finite difference equation does not (and from the numerical point of view cannot) have
this kind of singularity.

Figures 6-11 present curves showing plots of various quantities as functions of x or t.

Figures 6-10 show results for impact conditions k = 1, Vo = 5; while Fig. 11 is for k = 1
and 10, with Vo ranging from 0·1 to 20.

The most interesting single feature of these results is perhaps the appearance of
qualitative as well as quantitative contrasts between the cases A = 0 and A = 1, i.e. between

20

15
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3, vo' 50
4, " Vo' 200
6, k, I0, Vo 0 I 0
7, " Vo 0 5 0
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20

1 5

A 0 I. p' 3

Curve No 2. k, I. vo' 1 0

3, vo' 50
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7, Vo 5 0

8, Vo 200

x
FIG. II. Ratio of final strain of complete (numerical) solution 'If to that of the approximate "uniform
strain" solution 'Ii, as function of x, for various impact conditions, and a non-linear viscoplastic
behavior (p = 3). Changes in shape of the curves, as between non-strain hardening (Fig. II(a)) and

strain hardening (Fig. Il(b)) are notable.
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a pure viscoplastic material (perfectly plastic behavior with yield stress dependent on.
strain rate), and a modified form of viscoplastic behavior in which strain hardening is
considered. For example, considering final strains plotted as functions of x, Fig. 8(a)
(for A. = 0) shows monotonically decreasing functions whereas in Fig. 8(b) (for A. = 1)
the curves for p :?: 2 show pronounced minima; that for p = 1 monotonically increases.
The curves in Fig. 11 (for a variety of k and Vo magnitudes) also exhibit characteristic
features of being concave up for A. = °and concave down for A. = 1, at the point x = 1.
This difference between the two media was proved analytically for p = 1 in [3], and the
present calculations suggest that it holds also for the non-linear materials considered
here. In fact, the following statements hold for more general stress-strain laws; they are
given here without proof.

(I) For non-strain hardening materials represented by equations (5), with the addi­
tional condition Gss > 0, the result is

l1x(1, t) = °
l1xx(X, t) > °
l1xx(1, tJ) = °

(II) For strain-hardening materials represented by

11/ = F[s-g(l1)]

=0

if s > g(11)

if lsi ~ g(l1)

with the conditions Fs > 0, g~ > 0, the result is

l1x(l, t) = ° for t > 0,

The curves of Fig. 11 show final strains l1Ax) in ratio to the strains l1j computed from
an analysis which assumes that strains and stresses are at all times uniform along the
specimen rod. This simplified analysis is outlined in the next section. It is seen that the
final strains tend toward the result of the uniform strain theory as either k or Vo increases,
but the effect of increasing k is particularly strong.

Further remarks on physical interpretation of these results are given in the final
section.

4. UNIFORM STRAIN ANALYSIS

As the striking mass or impact velocity is increased, the strains tend toward a uniform
distribution along the rod. An approximate theory assuming uniform stress and strain is
presented here, appropriate for sufficiently large k or vo.

If v(t) is the velocity of the striking mass, since all quantities are independent of x the
equations of motion and strain rate behavior are

s(t) = -kvrU)

l1/(t) = F(s, 11) = v(t)

Eliminating s and v between these equations,

11/ = Fr - kl1//l 11] (14a)
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with the initial conditions

1](0) = 0, (14b)

Equations (14) can be reduced to a first order equation. Let

I1t = q.

Then

dq
I]ft = dl]q

and equations (14) become

dq
q = F[ - kqdl] , 1]] (ISa)

q = Vo when I] = O. (1Sb)

If equation (ISa) can be solved for dq/dl], it is convenient to put it in the form:

dl1
dq = f(q, 1]). (16)

Conventional methods of integrating first order differential equations can be applied to
equation (16) with initial condition (ISb). For comparison with the results of previous
sections, we take F as expressed by equation (3). Then equation (16) becomes

kq
(17a)

with the initial condition

I] = o. (17b)

(18)

if v~ > 8~

ifv~ = 8~

Our object is to find the final strain '11 which is the value of I] at q = O. The integration
of equation (17) was done by electronic computer, and the values of 1]1 have been used
in presenting the results of the complete solution in Fig. 11.

Equation (17) can be solved analytically in a closed form when A = 0 with p integer or
A "# 0 with p = 1, for A = 0 with p integral, the solution is given in [2]. For A "# 0 and
p = 1, the solution is

[
vo +2 - (v6 - 8~)tJVO/2(V6- 81l)\l2

A1]1+ 1 = (1 +vo+2~)t 2 (2 8 )!
vo+ + vo- ~

-(2~)t
A111 + 1 = [1 + (2~)t] exp 1+ (2~)t

1 * t [ vo _1(8~ - V~)tJ
l\.'1f+l = (1+vo+2~) exp -(8 2)ttan 2

~-vo +vo

where ~ = (A/2)kv~.
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5. DISCUSSION

In the preceding work the non-dimensional variables listed in Table 1 were used for
convenience in the computations. For physical interpretations, these have disadvantages
of mixing physical quantities specifying the impact conditions with those describing the
material behavior. Also the quantities specifying plastic and viscous properties are
intermingled. For example, the impact data are specified by the quantities k = GlpAL
and Do = VoIDL, and the parameter A = E1PD2L21(J~ is used to specify the strain
hardening behavior. These are convenient for numerical work, but make it difficult to
draw comparisons between different materials and impact conditions. The following
dimensionless parameters have more obvious physical meaning and are more convenient
for physical interpretations:

TABLE 2

Independent variables:
x

x =I'
r = l:!...olp)t T

L

Impact parameters:

Plasticity (strain hardening):

Strain rate dependence:

£1
f3 =-

Uo

(uolp)t
v = ----m.:-' p

Note relations with previously defined vo, A, '1, t:

vr/>o = Vo

(19)

t
r = ~

v

In the new parameters of Table 2, the quantity «(Jolp)t, with dimensions of velocity,
is a convenient reference characteristic of the material. There are two independent para­
meters specifying the impact data, which can be defined in various ways but in any case
enable one to specify the initial energy and initial momentum of the striking mass. The
most useful impact parameter is eJ, which represents the final strain in the specimen under
the idealized conditions of uniform strain and stress, all the energy being imagined as
absorbed at the yield stress (J 0 with neither strain hardening nor rate sensitivity. Since
eJ is also the initial kinetic energy of the striking mass, in a non-dimensional form, the
energy ratio R of initial energy to the maximum elastic strain energy can be written as

R = GV~ -'- (J~ AL = 2Eeo
2 . 2E (Jo f
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A necessary condition for validity of a rigid-plastic treatment is that R ~ 1; for the impact
problem this would be also a sufficient condition. For eJ of the order of 0·05 or more,
R would be roughly 100 or larger for one of the structural metals, and presumably a
rigid-plastic treatment would apply with good accuracy.

Similarly, the parameter rJ is the (non-dimensional) duration time of the deformation;
it is also the initial momentum in a non-dimensional form.

Estimates of the approximate ranges of numerical values of (O'o/p)! and other para­
meters representing material properties were given in [2] as follows:

0'0 (O'o/p)!
EtlO'o = /3 (O'o/p)! = vL

(ksi) (in/sec)
p

D
(in.)

Mild steel 30 6500 6-9 4-6 25-200

Aluminum
alloy 40 12,500 1-4 4-8 0'05-2
6061-T6

With these ranges in mind, the physical significance of the illustrative cases treated
in this report can be seen. Results have been given for k = 1, 10; Vo = 1,5,20; A = 0, 1.
Effects of changes of one of the impact variables k or eJ (or 4>0), or of the material para­
meters v or /3, can be observed if all the remaining quantities are held constant. For
example, suppose v and /3 have constant values; changes of k or of Vo then show the effects
of changing impact conditions on specimens of a given material. Table 3 shows the
numerical values of 4>0' eJ, and /3 assuming v = 20, which correspond to the magnitudes
of k, vo, and Aused in the calculations of this report.

TABLE 3. INTERPRETATION OF IMPACT UATA WITH v = 20
e = II/V2 = 11/400; P= 0 for). = 0; p = 400 for;. = I

The results shown in Fig. 11 thus correspond to tests on a material of moderately
strong rate sensitivity and either no strain hardening or very large strain hardening. The
range of impact energies considered is too wide to be realistic; at the small values of Vo
the condition R ~ 1 for a rigid-plastic treatment could hardly be satisfied, while at the
largest values of Vo and k the strains are unrealistically large.

Alternatively one can take the impact conditions constant and consider the effects
of changing material parameters. However the relation /3 = AV2 shows that if A is constant,
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a change in Paccompanies one in v. The present calculations are therefore not suitable
for comparing the responses of different materials under constant impact conditions.
Further calculation for this purpose has been carried out, and will be presented in a
companion report [6].
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Resume--Une technique numerique est d6crite pour la solution du choc sur des barres finies dans laquelle Ie
taux de tension est suppose etre fonction de la tension et de la deformation. Des exemples sont donnes pour la
fonction du taux de tension prise comme une puissance de la surcharge dynamique et les resultats sont com­
pares aux solutions analytiques disponibles et a la theorie de la tension uniforme approximative.

Zusammenfassung~EineBeschreibung der numerischen Technik zur Losung des Stosses auf endliche Stiibe,
wo die Dehnungsgeschwindigkeit als Funktion von Spannung und Dehnung vorausgesetzt wird. Beispiele
werden gegeben fUr die Funktion der Dehnungsgeschwindigkeit als Potenz der dynamischen Oberbeanspruchung,
und die Resultate werden verglichen mit vorhandenen analytischen Losungen sowie mit der Theorie der
gleichformigen Dehnung.

AOCTJl8KT-OnHCbIBaeTCJl '1HCJlOBble paC'IeTbl AJlJI peweHHJI YAapa no KOHe'lHOM 6pyce, BKOTOpOM CKOPOCTb
Ae.popMaUHH JlBJlJleTCJI .pYHKUHdi: HanpJllKeHHJI H Ae.popMaUHH. ):(aIOTCJI npHMephl Ha .pyHKUHIO Ae4>oP­
MaUHH, B3J1TOii: 3a C'IeT AHHaMH'IecKoro nOBblWeHHJI HanpJllKeHHJI. Pe3YJlbTaTbI CpaBHHBaIOTCJI C AocTyn­
HhlMH aHaJlHTH'IeCKHMH peWeHHJlMH H IIpH6J1HlKeHHoii: eAHHo06pa3Hoii: TeopHeii: AecjlopMaUHH.


